1. Description

Temporal and tissue-specific gene expression in mammals depends on complex interactions between transcriptional regulatory proteins and cis-elements such as promoters, enhancers and insulators.

Using the laboratory mouse as a model system, we are using chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) to conduct genome-wide analysis of active promoters, enhancers and insulator elements in mouse embryonic stem cells, embryonic fibroblasts, and a panel of embryonic and adult tissues. We will identify tissue specific promoters and enhancers, and characterize the regulatory mechanisms that control the gene expression programs in the specific tissues.

2. Harvesting Thymus

Secure mouse to a piece of Styrofoam or a dissecting pad with pins through its hands and feet, stretched out completely, but not too tight, to each corner. Grab skin below the center of the belly with forceps and cut through the skin only, not the underlying abdominal cavity. Cut along the ventral midline of the mouse stopping when even with the shoulders. Gently pull at the skin to separate it from the underlying abdominal and thoracic cavities.

Cut into the abdominal cavity following the same line you cut along through the skin. Cut through the sternum and pull back both sides of the rib cage and secure with pins, revealing the chest cavity. Remove the white, butterfly-shaped thymus holding with forceps and cutting with scissors at base by the top of the heart. Be careful not to pierce the heart as excess blood makes removal and washing of the thymus more difficult. Place in cold PBS and remove membrane on outside of the thymus. Mince completely with a razor blade while on ice.

3. Enrichment and Library Preparation

Chromatin immunoprecipitation was performed according to http://bioinformatics-renlab.ucsd.edu/RenLabChipProtocolV1.pdf
Library construction was performed according to http://bioinformatics-renlab.ucsd.edu/RenLabLibraryProtocolV1.pdf

4. Sequencing and Analysis

Samples were sequenced on an Illumina Genome Analyzer GAII for 36 cycles. Image analysis, base calling and alignment to the mouse genome version mm9 were performed using Illumina's RTA and Genome Analyzer Pipeline software. Alignment to the mouse genome was performed using ELAND with a seed length of 25 and allowing up to two mismatches. Only the sequences that mapped to one location were used for further analysis. Of those sequences, clonal reads, defined as having the same start position on the same strand, were discarded. BED and wig files were created using custom perl scripts.